go中的类型转换成interface之后如何复原

go中的类型转换成interface之后如何复原

Posted by liz on May 17, 2020

go中interface转换成原来的类型

首先了解下interface

什么是interface?

首先 interface 是一种类型,从它的定义可以看出来用了 type 关键字,更准确的说 interface 是一种具有一组方法的类型,这些方法定义了 interface 的行为。

type I interface {
    Get() int
}

interface是一组method的集合,是duck-type programming的一种体现(不关心属性(数据),只关心行为(方法))。我们可以自己定义interface类型的struct,并提供方法。

type MyInterface interface{
    Print()
}

func TestFunc(x MyInterface) {}
type MyStruct struct {}
func (me MyStruct) Print() {}

func main() {
    var me MyStruct
    TestFunc(me)
}

go 允许不带任何方法的 interface ,这种类型的 interfaceempty interface

如果一个类型实现了一个 interface 中所有方法,必须是所有的方法,我们说类型实现了该 interface,所以所有类型都实现了 empty interface,因为任何一种类型至少实现了 0 个方法。go 没有显式的关键字用来实现 interface,只需要实现 interface 包含的方法即可。

interface还可以作为返回值使用。

如何判断interface变量存储的是哪种类型

日常中使用interface,有时候需要判断原来是什么类型的值转成了interface。一般有以下几种方式:

fmt
import "fmt"
func main() {
    v := "hello world"
    fmt.Println(typeof(v))
}
func typeof(v interface{}) string {
    return fmt.Sprintf("%T", v)
}
反射
import (
    "reflect"
    "fmt"
)
func main() {
    v := "hello world"
    fmt.Println(typeof(v))
}
func typeof(v interface{}) string {
    return reflect.TypeOf(v).String()
}
断言

Go语言里面有一个语法,可以直接判断是否是该类型的变量: value, ok = element.(T),这里value就是变量的值,ok是一个bool类型,elementinterface变量,T是断言的类型。

如果element里面确实存储了T类型的数值,那么ok返回true,否则返回false

让我们通过一个例子来更加深入的理解。

value, ok := v.(string)

if ok {
    return value
}

类型不确定可以配合switch:

func main() {
    v := "hello world"
    fmt.Println(typeof(v))
}
func typeof(v interface{}) string {
    switch t := v.(type) {
    case int:
        return "int"
    case float64:
        return "float64"
    //... etc
    default:
        _ = t
        return "unknown"
    }
}

对于fmt也是用了反射的,同时里面也用到了断言:

func (p *pp) printArg(arg interface{}, verb rune) {
	p.arg = arg
	p.value = reflect.Value{}

	if arg == nil {
		switch verb {
		case 'T', 'v':
			p.fmt.padString(nilAngleString)
		default:
			p.badVerb(verb)
		}
		return
	}

	// Special processing considerations.
	// %T (the value's type) and %p (its address) are special; we always do them first.
	switch verb {
	case 'T':
		p.fmt.fmtS(reflect.TypeOf(arg).String())
		return
	case 'p':
		p.fmtPointer(reflect.ValueOf(arg), 'p')
		return
	}

	// Some types can be done without reflection.
	switch f := arg.(type) {
	case bool:
		p.fmtBool(f, verb)
	case float32:
		p.fmtFloat(float64(f), 32, verb)
	case float64:
		p.fmtFloat(f, 64, verb)
	case complex64:
		p.fmtComplex(complex128(f), 64, verb)
	case complex128:
		p.fmtComplex(f, 128, verb)
	case int:
		p.fmtInteger(uint64(f), signed, verb)
	case int8:
		p.fmtInteger(uint64(f), signed, verb)
	case int16:
		p.fmtInteger(uint64(f), signed, verb)
	case int32:
		p.fmtInteger(uint64(f), signed, verb)
	case int64:
		p.fmtInteger(uint64(f), signed, verb)
	case uint:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint8:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint16:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint32:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint64:
		p.fmtInteger(f, unsigned, verb)
	case uintptr:
		p.fmtInteger(uint64(f), unsigned, verb)
	case string:
		p.fmtString(f, verb)
	case []byte:
		p.fmtBytes(f, verb, "[]byte")
	case reflect.Value:
		// Handle extractable values with special methods
		// since printValue does not handle them at depth 0.
		if f.IsValid() && f.CanInterface() {
			p.arg = f.Interface()
			if p.handleMethods(verb) {
				return
			}
		}
		p.printValue(f, verb, 0)
	default:
		// If the type is not simple, it might have methods.
		if !p.handleMethods(verb) {
			// Need to use reflection, since the type had no
			// interface methods that could be used for formatting.
			p.printValue(reflect.ValueOf(f), verb, 0)
		}
	}
}

下面来简单探究下反射是如何判断interface

// TypeOf returns the reflection Type that represents the dynamic type of i.
// If i is a nil interface value, TypeOf returns nil.
func TypeOf(i interface{}) Type {
	eface := *(*emptyInterface)(unsafe.Pointer(&i))
	return toType(eface.typ)
}

eface := *(*emptyInterface)(unsafe.Pointer(&i))用到了一个emptyInterface,我们来看下这个结构的信息:

// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
	typ  *rtype
	word unsafe.Pointer
}

其中typ指向一个rtype实体, 它表示interface的类型以及赋给这个interface的实体类型。word则指向interface具体的值,一般而言是一个指向堆内存的指针。

TypeOf看到的是空接口interface{},它将变量的地址转换为空接口,然后将得到的rtype转为Type接口返回。需要注意,当调用reflect.TypeOf的之前,已经发生了一次隐式的类型转换,即将具体类型的向空接口转换。这个过程比较简单,只要拷贝typ *rtypeword unsafe.Pointer就可以了。

来看下interface的底层源码

我的go版本是go version go1.13.7

ifaceeface都是Go中描述接口的底层结构体,区别在于iface描述的接口包含方法,而eface则是不包含任何方法的空接口:interface{}

eface

代码在runtime/runtime2.go:

type eface struct {
	_type *_type
	data  unsafe.Pointer
}

eface有两个字段,_type指向对象的类型信息,data数据指针。指针指向的数据地址,一般是在堆上的。

我们来看下_type

// src/rumtime/runtime2.go
type _type struct {
    size       uintptr     // 类型的大小
    ptrdata    uintptr     // size of memory prefix holding all pointers
    hash       uint32      // 类型的Hash值
    tflag      tflag       // 类型的Tags 
    align      uint8       // 结构体内对齐
    fieldalign uint8       // 结构体作为field时的对齐
    kind       uint8       // 类型编号 定义于runtime/typekind.go
    alg        *typeAlg    // 类型元方法 存储hash和equal两个操作。map key便使用key的_type.alg.hash(k)获取hash值
    gcdata    *byte        // GC相关信息
    str       nameOff      // 类型名字的偏移    
    ptrToThis typeOff    
}

_typego中类型的公共描述,里面包含GC,反射等需要的细节,它决定data应该如何解释和操作。对于不同的数据类型它的描述信息是不一样的,在_type的基础之上配合一些额外的描述信息,来进行区分。

// src/runtime/type.go
// ptrType represents a pointer type.
type ptrType struct {
   typ     _type   // 指针类型 
   elem  *_type // 指针所指向的元素类型
}
type chantype struct {
    typ  _type        // channel类型
    elem *_type     // channel元素类型
    dir  uintptr
}
type maptype struct {
    typ           _type
    key           *_type
    elem          *_type
    bucket        *_type // internal type representing a hash bucket
    hmap          *_type // internal type representing a hmap
    keysize       uint8  // size of key slot
    indirectkey   bool   // store ptr to key instead of key itself
    valuesize     uint8  // size of value slot
    indirectvalue bool   // store ptr to value instead of value itself
    bucketsize    uint16 // size of bucket
    reflexivekey  bool   // true if k==k for all keys
    needkeyupdate bool   // true if we need to update key on an overwrite
}

这些类型信息的第一个字段都是_type(类型本身的信息),接下来是一堆类型需要的其它详细信息(如子类型信息),这样在进行类型相关操作时,可通过一个字(typ *_type)即可表述所有类型,然后再通过_type.kind可解析出其具体类型,最后通过地址转换即可得到类型完整的”_type树”,参考reflect.Type.Elem()函数:

// reflect/type.go
// reflect.rtype结构体定义和runtime._type一致  type.kind定义也一致(为了分包而重复定义)
// Elem()获取rtype中的元素类型,只针对复合类型(Array, Chan, Map, Ptr, Slice)有效
func (t *rtype) Elem() Type {
   switch t.Kind() {
   case Array:
      tt := (*arrayType)(unsafe.Pointer(t))
      return toType(tt.elem)
   case Chan:
      tt := (*chanType)(unsafe.Pointer(t))
      return toType(tt.elem)
   case Map:
      // 对Map来讲,Elem()得到的是其Value类型
      // 可通过rtype.Key()得到Key类型
      tt := (*mapType)(unsafe.Pointer(t))
      return toType(tt.elem)
   case Ptr:
      tt := (*ptrType)(unsafe.Pointer(t))
      return toType(tt.elem)
   case Slice:
      tt := (*sliceType)(unsafe.Pointer(t))
      return toType(tt.elem)
   }
   panic("reflect: Elem of invalid type")
}

iface

表示的是非空的接口:

type iface struct {
	tab  *itab
	data unsafe.Pointer
}

// layout of Itab known to compilers
// allocated in non-garbage-collected memory
// Needs to be in sync with
// ../cmd/compile/internal/gc/reflect.go:/^func.dumptypestructs.
type itab struct {
	inter *interfacetype  // 接口定义的类型信息
	_type *_type          // 接口实际指向值的类型信息
	hash  uint32 // copy of _type.hash. Used for type switches.
	_     [4]byte
	fun   [1]uintptr     // 接口方法实现列表,即函数地址列表,按字典序排序 variable sized
}
// runtime/type.go
// 非空接口类型,接口定义,包路径等。
type interfacetype struct {
   typ     _type
   pkgpath name
   mhdr    []imethod      // 接口方法声明列表,按字典序排序
}

// 接口的方法声明 
type imethod struct {
   name nameOff              // 方法名
   ityp typeOff              // 描述方法参数返回值等细节
}

iface同样也是有两个指针,tab指向一个itab实体, 它表示接口的类型以及赋给这个接口的实体类型。data则指向接口具体的值,一般而言是一个指向堆内存的指针。

fun表示interfacemethod的具体实现。比如interfacetype包含了两个method分别是AB。但是有一点很奇怪,这个fun是长度为1的uintptr数组,那么是怎么表示多个的呢?
其实上面源码的注释已经能给到我们答案了,variable sized,这是个是可变大小的。go中的uintptr一般用来存放指针的值,那这里对应的就是函数指针的值(也就是函数的调用地址)。如果有更多的方法,在它之后的内存空间里继续存储。也就是在fun[0]后面一次写入其他method对应的函数指针。

接口的类型转换是怎么实现的呢?

举个例子:

type coder interface {
	code()
	run()
}

type runner interface {
	run()
}

type Gopher struct {
	language string
}

func (g Gopher) code() {
	return
}

func (g Gopher) run() {
	return
}

func main() {
	var c coder = Gopher{}

	var r runner
	r = c
	fmt.Println(c, r)
}

定义了两个 interface: coderrunner。定义了一个实体类型 Gopher,类型 Gopher 实现了两个方法,分别是 run()code()main 函数里定义了一个接口变量 c,绑定了一个 Gopher 对象,之后将 c 赋值给另外一个接口变量 r 。赋值成功的原因是 c 中包含 run() 方法。这样,两个接口变量完成了转换。

上面的转换调用了下面的函数实现的

func convI2I(inter *interfacetype, i iface) (r iface) {
	tab := i.tab
	if tab == nil {
		return
	}
	if tab.inter == inter {
		r.tab = tab
		r.data = i.data
		return
	}
	r.tab = getitab(inter, tab._type, false)
	r.data = i.data
	return
}

关于conv的函数定义,其中E代表eface,I代表iface,T代表编译器已知类型,即静态类型。

inter表示转换之后的接口类型,i表示转换之前的实体类型接口,r表示转换之后的实体类型接口。
这个函数先做了判断,如果两个转换之前和转换之后的接口类型是一样的,就直接把转换之前的接口信息赋值给r就可以了。如果不一样,就调用getitab

func getitab(inter *interfacetype, typ *_type, canfail bool) *itab {
	if len(inter.mhdr) == 0 {
		throw("internal error - misuse of itab")
	}

	// easy case
	if typ.tflag&tflagUncommon == 0 {
		if canfail {
			return nil
		}
		name := inter.typ.nameOff(inter.mhdr[0].name)
		panic(&TypeAssertionError{nil, typ, &inter.typ, name.name()})
	}

	var m *itab

	// First, look in the existing table to see if we can find the itab we need.
	// This is by far the most common case, so do it without locks.
	// Use atomic to ensure we see any previous writes done by the thread
	// that updates the itabTable field (with atomic.Storep in itabAdd).
	t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable)))
	if m = t.find(inter, typ); m != nil {
		goto finish
	}

	// Not found.  Grab the lock and try again.
	lock(&itabLock)
	if m = itabTable.find(inter, typ); m != nil {
		unlock(&itabLock)
		goto finish
	}

	// Entry doesn't exist yet. Make a new entry & add it.
	m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.mhdr)-1)*sys.PtrSize, 0, &memstats.other_sys))
	m.inter = inter
	m._type = typ
	m.init()
	itabAdd(m)
	unlock(&itabLock)
finish:
	if m.fun[0] != 0 {
		return m
	}
	if canfail {
		return nil
	}
	// this can only happen if the conversion
	// was already done once using the , ok form
	// and we have a cached negative result.
	// The cached result doesn't record which
	// interface function was missing, so initialize
	// the itab again to get the missing function name.
	panic(&TypeAssertionError{concrete: typ, asserted: &inter.typ, missingMethod: m.init()})
}

简单总结一下:getitab 函数会根据 interfacetype_type 去全局的 itab 哈希表中查找,如果能找到,则直接返回;否则,会根据给定的 interfacetype_type 新生成一个 itab,并插入到 itab 哈希表,这样下一次就可以直接拿到 itab
第一次去查询的时候如果查找到,直接返回

if m = t.find(inter, typ); m != nil {
		goto finish
	}

如果在hash表中没有找到,这时候锁住itabLock,然后去重新写入itab到哈希表,当写入之后,上游的查询拿到值了,解除锁的阻塞,然后返回。

if m = itabTable.find(inter, typ); m != nil {
		unlock(&itabLock)
		goto finish
	}

再来看一下 itabAdd 函数的代码:

// itabAdd adds the given itab to the itab hash table.
// itabLock must be held.
func itabAdd(m *itab) {
	// Bugs can lead to calling this while mallocing is set,
	// typically because this is called while panicing.
	// Crash reliably, rather than only when we need to grow
	// the hash table.
	if getg().m.mallocing != 0 {
		throw("malloc deadlock")
	}

	t := itabTable
	if t.count >= 3*(t.size/4) { // 75% load factor
		// Grow hash table.
		// t2 = new(itabTableType) + some additional entries
		// We lie and tell malloc we want pointer-free memory because
		// all the pointed-to values are not in the heap.
		t2 := (*itabTableType)(mallocgc((2+2*t.size)*sys.PtrSize, nil, true))
		t2.size = t.size * 2

		// Copy over entries.
		// Note: while copying, other threads may look for an itab and
		// fail to find it. That's ok, they will then try to get the itab lock
		// and as a consequence wait until this copying is complete.
		iterate_itabs(t2.add)
		if t2.count != t.count {
			throw("mismatched count during itab table copy")
		}
		// Publish new hash table. Use an atomic write: see comment in getitab.
		atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2))
		// Adopt the new table as our own.
		t = itabTable
		// Note: the old table can be GC'ed here.
	}
	t.add(m)
}

最后总结下:

  • 1、具体类型转空接口时,_type 字段直接复制源类型的 _type;调用 mallocgc 获得一块新内存,把值复制进去,data 再指向这块新内存。
  • 2、具体类型转非空接口时,入参 tab 是编译器在编译阶段预先生成好的,新接口 tab 字段直接指向入参 tab 指向的 itab;调用 mallocgc 获得一块新内存,把值复制进去,data 再指向这块新内存。
  • 3、而对于接口转接口,itab 调用 getitab 函数获取。只用生成一次,之后直接从 hash 表中获取。

接口的动态类型和动态值

type iface struct {
	tab  *itab
	data unsafe.Pointer
}

iface我们可以看到,是有一个tab接口指针,指向数据类型,data数据指针,指向具体的数据。他们也被称为动态类型动态值
因为两个都是指针,所以默认值都是nil。所以当两者都是nil的时候这个接口值才是nil,也就是接口值 == nil

func main() {
	var f interface{}
	fmt.Println("+++动态类型和动态值都是nil+++")
	fmt.Println(f == nil)
	fmt.Printf("f: %T, %v\n", f, f)

	var g *string
	f = g
	fmt.Println("+++类型为 *string+++")
	fmt.Println(f == nil)
	fmt.Printf("f: %T, %v\n", f, f)
}

打印下输出:

+++动态类型和动态值都是nil+++
true
f: <nil>, <nil>
+++类型为 *string+++
false
f: *string, <nil> 

interface如何支持泛型

严格来说,在 Golang 中并不支持泛型编程。在 C++ 等高级语言中使用泛型编程非常的简单,所以泛型编程一直是 Golang 诟病最多的地方。但是使用 interface 我们可以实现“泛型编程”,为什么?因为 interface 是一种抽象类型,任何具体类型(int, string)和抽象类型(user defined)都可以封装成 interface。以标准库的 sort 为例。

package sort

// A type, typically a collection, that satisfies sort.Interface can be
// sorted by the routines in this package.  The methods require that the
// elements of the collection be enumerated by an integer index.
type Interface interface {
    // Len is the number of elements in the collection.
    Len() int
    // Less reports whether the element with
    // index i should sort before the element with index j.
    Less(i, j int) bool
    // Swap swaps the elements with indexes i and j.
    Swap(i, j int)
}

...

// Sort sorts data.
// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
// data.Less and data.Swap. The sort is not guaranteed to be stable.
func Sort(data Interface) {
    // Switch to heapsort if depth of 2*ceil(lg(n+1)) is reached.
    n := data.Len()
    maxDepth := 0
    for i := n; i > 0; i >>= 1 {
        maxDepth++
    }
    maxDepth *= 2
    quickSort(data, 0, n, maxDepth)
}

Sort 函数的形参是一个 interface,包含了三个方法:Len(),Less(i,j int),Swap(i, j int)。使用的时候不管数组的元素类型是什么类型(int, float, string…),只要我们实现了这三个方法就可以使用 Sort 函数,这样就实现了“泛型编程”。有一点比较麻烦的是,我们需要自己封装一下。下面是一个例子。

type Person struct {
    Name string
    Age  int
}

func (p Person) String() string {
    return fmt.Sprintf("%s: %d", p.Name, p.Age)
}

// ByAge implements sort.Interface for []Person based on
// the Age field.
type ByAge []Person //自定义

func (a ByAge) Len() int           { return len(a) }
func (a ByAge) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
func (a ByAge) Less(i, j int) bool { return a[i].Age < a[j].Age }

func main() {
    people := []Person{
        {"Bob", 31},
        {"John", 42},
        {"Michael", 17},
        {"Jenny", 26},
    }

    fmt.Println(people)
    sort.Sort(ByAge(people))
    fmt.Println(people)
}

具体一点来说,也就是如果是在实现一个服务时,对于不同场景,可以将其共同特征抽象出来,在一个interface中声明,然后给不同的场景定义其特定的struct,上层的逻辑可以通过传入interface来执行,特化则通过struct实现对应的方法,从而达到一定程度的泛型。

参考

【理解 Go interface 的 5 个关键点】https://sanyuesha.com/2017/07/22/how-to-understand-go-interface/
【深入理解 Go Interface】https://zhuanlan.zhihu.com/p/32926119
【GO如何支持泛型】https://zhuanlan.zhihu.com/p/74525591
【Golang面向对象编程】https://code.tutsplus.com/zh-hans/tutorials/lets-go-object-oriented-programming-in-golang–cms-26540
【深度解密Go语言之关于 interface 的10个问题】https://www.cnblogs.com/qcrao-2018/p/10766091.html
【golang如何获取变量的类型:反射,类型断言】https://ieevee.com/tech/2017/07/29/go-type.html
【Go接口详解】https://zhuanlan.zhihu.com/p/27055513